
Versioning Style Guide

Martin Baute

April 19, 2016

Preface

I could have written down a number of rules. Actually, I did so at first, but
the resulting paper was a dry, depressing piece of legalese. So I wrote a tutorial
instead, starting with the first source file and extending into maintaining mul-
tiple development branches of a complex product. Credit goes to the engineers
at Amiga Inc. (1982-1984), as this system was strongly inspired by AmigaOS.

Some of the following goes deeper than just versioning, into the realm of
release politics. At some points I will ramble a bit about things, at other points
I just quietly depict procedures that might feel ”strange” at first without saying
much on the ”why”. In those places, I wouldn’t get to the end of it if I’d start
rambling.

Pre-1.0 versions aren’t for a wider audience, for example, and I have to really
bite my tongue not to get started about the stupidity of public betas that are
not even alpha quality in my book, or those eternally-pre-1.0 products that are
considered ”stable enough” by their maintainers...

(Breathe. Relax. Breathe. Focus. Yes, that’s better. ;))

1 Software != System

When you are reading a paper on versioning, chances are you want to use
some versioning control system (VCS). CVS, Subversion, PVCS, ClearCase,
Mercurial, git... all of them being great tools, but none of them a system by
itself. None of them enables you to tell which versions of which source files went
into building a given executable. To achieve this, you need a system in addition
to the software.

Actually, you need not one, but three versioning systems:

• for the sources (exe/main.c, lib/my func.c, doc/chapter5.xml);

• for the components (MySoft.exe, MySoft Manual.pdf, MySoft.lib);

• for the product (the MySoft package).

In the following chapters, I will describe an integrated system that, I hope,
makes maintenance easier for users, testers, and developers alike.

1

2 Beginnings

You have written a small program for your personal use. It consists of a couple
of source files. After going through several revisions, you realize it is time to
put your sources under version control.

Perhaps you already have VCS software of some sort running on your system,
and adding another repository is quite easy to do. Perhaps you open up another
SourceForge project. Perhaps version control is all new to you, and you have to
read up on the basics - in which case I, personally, would recommend looking
into Subversion1. It has a ”traditional” interface, is almost as well-supported as
the venerable CVS but easier to use, and is much superior to CVS in handling
branches and tags while still being of low complexity.

Some version control systems allow for keyword expansion. Some keyword
(like Id, placed in a source comment, gets expanded to a status string usually
containing file version, file name, date, and username of last editor whenever
you check out that file from the repository. This can help you to link files ”flying
around” on your hard drive or (as hardcopy) on your desk, with a given version
of that file in the repository.

For our version control system, we will just ignore that Id string in any
case. Its format, and the format of the file version used in that string, is vastly
different from software to software, and many of the newer, distributed VCS
do not support it at all, which makes the concept useless for any software-
independent system.

But you have your files under version control now, and you can use the
features of your VCS to do... whatever your VCS allows you to do. (Read the
manual!) You made the first step.

3 Components

A number of source files makes up a component. Multiple C files and a makefile
make up an executable, or library. Multiple LaTeX files and a makefile make
up a documentation. Given the component, we must be able to identify which
source files in which version were used to build the component; and we must
be able to retrieve all files required to build the component from the repository,
with a single command.

The file versions added automatically by our VCS are worthless for this.
They differ from VCS to VCS, and they cannot be retrieved from the component.
So, instead of pushing the individual file versions into the component somehow,
we do it the other way around: We give a component version to the component,
and then tag that component version on the source files used.

When you compile your first release of your project under version control,
every component is assigned a 1.0 version. Now, you have two problems:

• how do you get that version number into the component binary so that it
can be retrieved?

• how do you get that version number into the individual source files so that
them - and only them in their current version - are marked as constituting
the component 1.0?

1http://subversion.tigris.org

2

The answer is, of course, ”it depends”, and it depends on the VCS you are
using. Virtually every version control software supports ”tagging” of source
files, and that is what we will use at this stage. When you compile version
1.0 of MySoft.exe, every contributing source file should be tagged ”MySoft.exe
1.0”. Find out how you can tell your VCS to ”check out all source files tagged
MySoft.exe 1.0”. You will have to do some manual browsing here to find out
how your VCS of choice ticks.

Once you have that in place, you’re done with the hardest part. Promise. ;)

4 Pre-Release

What was said in the previous chapter leaves you free to check in source files
more often than tagging them. If more than one person works on the project,
the modus operandi should be to outright ignore any file versions that are not
tagged. That’s work-in-progress of somebody else; the latest ”visible” version
is the latest ”tagged” one. If you are working in a team, work out some MO
to handle concurrent development (multiple developers working on the same
file, potentially conflicting edits and two developers attempting to use the same
tag). As this again depends on the features of the VCS used, you’ll have to
find out how yourself, but it would probably be a good idea to ”soft lock” a
component being worked upon, so that you will be notified on checking out
sources if someone else is already working on the same component.

Whenever your work-in-progress has reached another stable point, tag it
again. Don’t be afraid to tag often, especially in the pre-release phase. Too
many changes between two tags render any error-seeking diff useless. A typical
changeset should address a single problem, be describable with a single sentence
(the check-in comment), and include an update to the documentation where
applicable (i.e., don’t postpone documentation updates till later, since later
never comes). It also should compile without warnings and pass the regression
tests (which you have automatted to run on each check-in, didn’t you?).

If a check-in comment doesn’t fit all files touched in the changeset, or does
not describe all changes made, then your changeset isn’t a good one. This
requires experience. If you discover problem B while working on problem A,
make a note, and create a new changeset for problem B after you finished the
one for problem A.

Sorry for the rambling, but this is important. If you don’t task yourself here,
the useability of a version control system degenerates sharply.

These frequent ”intermediate” tags always increment the minor version
number of the component - 1.1, 1.2, 1.3 and so on.

5 Product Build

So now you have a collection of components, and you put them together to form
the larger product for the first time. While your components have undergone
individual testing (you are using automatted test drivers to ensure correctness
of your components, aren’t you?), the product as a whole is untested. Hence,
while the components are versioned 1.x, the product is versioned 0.1.

3

This is an important point in our version control system. MySoft.exe 1.27,
MySoft Manual.pdf 1.8 and MySoft.lib 1.31 constitute MySoft 0.1. Most likely,
you will continue working on MySoft. There will be a MySoft 0.2 some day.
So, when you tag your sources the first time after a product release, you bump
their major version number and reset the minor version number to 1.

The first step towards MySoft 0.2 are thus MySoft.exe 2.1, MySoft Man-
ual.pdf 2.1, and MySoft.lib 2.1. The minor version will probably iterate a cou-
ple of times before you are ready to build MySoft 0.2, but you just established
an ”information link” between the product version 0.1 and the 1.x component
versions. A 2.x component does not belong to a 0.1 product. If someone ap-
proaches you with a bug report and states that MySoft 0.1 doesn’t work because
MySoft.lib 2.14 throws an exception, you know that the problem is probably a
corrupt update or somesuch.

In case that a component doesn’t change at all between MySoft versions,
you still have to bump the major version number of the component - 2.**0**
is reserved for this case. This is a somewhat tricky and implicit ”information
encoding”, but I find the idea appealing. If you don’t like it, don’t do it.
The information content (”unchanged since last MySoft version”) is marginal
anyway.

Using this scheme, you can work comfortably all through the pre-release
phase of MySoft. Things get a bit more complicated once you ”go public” with
MySoft 1.0.

6 Alpha - Beta - Release - Patch

We’ll take a jump into the future. MySoft has been released to the public.
Version 1.6 just hit he shelves (consisting of components versioned 30.x), and
it’s a stunning success. You acquired a couple of co-developers helping you in
the development.

As usual, once a new product release has been made, you bump the com-
ponents’ major version on their next tagging, to 31.x. People using MySoft 1.6
intensively enough to care for component versions will know that 31.x sources
or components belong to a future version, even if they come across them in
isolation. Your co-developers know that, too.

After a couple of changes, you are satisfied with the result. You build a
new MySoft package. Of course, the next logical version number is 1.7, but
you haven’t tested that one yet. How to avoid people jumping on what they
consider the next release of their favourite software package, and running into
any number of undiscovered bugs?

6.1 Alpha

The answer is ”1.7 alpha 1”. Alpha tells people that this is an internal devel-
opment snapshot, no warranties, hands off unless you’re a MySoft developer
yourself. The number is there so that you are prepared to go through a number
of minor patches before 1.7 is ready for release.

Your co-developers give 1.7 alpha 1 some testing, and discover several minor
flaws (or come up with better suggestions). Changes are applied (with the

4

components’ minor version bumped accordingly), and a new version of MySoft
is built - ”1.7 alpha 2”.

6.2 Beta

That version is better, your co-developers give it a thumbs-up after some weeks
of testing. Without applying any changes, you tag 1.7 alpha 2 as 1.7 beta 2 (note
that the number after the alpha/beta part is not reset, to keep the ”information
link” that alpha 2 and beta 2 are, in fact, identical). You release the software
to a selected group of beta testers (and early adopters), to put some stress on
it in real-life conditions, and to have a higher chance at discovering the more
obscure bugs.

Personally I advocate against ”public betas”, as they don’t do the term ”beta
tester” any justice. A beta tester is much more than someone using the software
on his system and looking if it breaks. A beta tester puts a software through
all kinds of possible and impossible situations, tracks down misbehaviour to the
smallest set of actions required to reproduce the error, and files a report to the
project’s bug tracker. That is a skill set in itself, in no way inferior to a code
developer. Good bug reports actually help you developers to identify and fix
the problem in a timely fashion, and immensely improve product quality. Good
beta testers are an asset to any project. ”Public beta” implies that anyone is
good enough to be a beta tester; that is not the case, and if your bug tracker
either remains empty or overflows with reports that are of little use, don’t say
I didn’t tell you.

If a beta tester comes up with a flaw or bug that keeps 1.7 beta 2 from
being released, you just apply more changes to your sources, bump the minor
number of the affected components, and release 1.7 alpha 3. If the changes are
really minor, like correcting typos, you might go right for 1.7 beta 3 instead and
bypass the alpha phase - but be careful, every beta release means lots of tiring
work for your beta testers.

6.3 Release

Some day, a beta will get the thumbs-up from your beta testers, and you will
tag that beta as 1.7, to be released to the public.

If you aren’t doing Open Source, all your users will ever see is a major.minor
version number. If you do Open Source, they will know to stay away from
anything that has more than that in its version label.

6.4 Patch

Then there is the issue of maintenance. Just telling people to upgrade to the
latest version isn’t a nice way of handling issues with older ones, at least not
with complex products like operating systems, compilers etc. – there might be
some downward compatibility issues, or the update might be too costly to be
viable to the customer. Bottom line, you might want to provide updates to 1.6
of your product even after 1.7 came out.

Here, again, the feature set of your respective VCS decides how you han-
dle things on the tool level. You might want to create a branch whenever you
start working on a new release. As for the versioning system, well, the 30.x

5

components are still there, so that is what you apply any subsequent patches
to. It might be a good idea to apply a ”MySoft 1.6” tag to the 30.x compo-
nents involved, so you don’t have to look up the individual component versions
involved. You still need a way of keeping the component tags intact, or you
wouldn’t know that it’s MySoft.lib 30.14 you are applying the patch to (so you
wouldn’t know you have to apply a 30.15 tag when you are done).

As for versioning your patches... AmigaOS provided a SetPatch binary
(a component of its own), which combined all patches for all versions of the
operating system. Regardless whether you were using AmigaOS 2.1 or 3.0 or
whatever, as long as you had the latest SetPatch run at boot time, you had the
latest OS patches installed. It was the one component you would use despite its
major version number not matching your other components. Personally I liked
this scheme very much, as it not only made maintenance (and looking for new
patches) much easier, it also meant that developers were mindful of how many
changes could be squeezed into a patch and what required a new version.

You could copy this approach, or introduce a per-version ”patch component”
if you consider a one-size-fits-all uberpatch to be too limiting / demanding. If
you don’t want to use this approach at all, you have to denote the ”patch level”
of MySoft as a whole - perhaps as ”MySoft 1.6 patch 3” or somesuch. Since it
is quite common for even large-scale projects to abandon older releases as soon
as a newer one comes out anyway, I won’t go into more depth here.

7 The 1.0 Release Rant

”Release early, release often” is the credo of the Open Source community. I
believe this concept is fundamentally flawed.

While project maintainers might look on frequent public releases as a means
of quicker evolution through higher user feedback, this concept waters down
the message given to the user by the version number. On the one hand pre-1.0
versions are advertised as the solution to real-life problems (like OpenSSH and
OpenSSL), and the user is expected to accept the concept of pre-1.0 software as
critical part of his system. On the other hand, complains about buggy behaviour
or functional shortcomings are frequently declined with a haughty ”it’s pre-1.0,
what do you expect?”.

Either a product is fit for the public (1.0 or later), or it shouldn’t be packaged
for public access outside a public beta. A public beta is not a solution to a
productive problem, but a workload to the person employing it.

Some maintainers believe that releasing a 1.0 somehow requires all the fea-
tures they ever dreamt of to be implemented. This is folly. Set yourself realistic
goals for your 1.0 release. Make notes of which features you will reserve for
later versions. Implement a functional subset of your dreams, and release your
1.0 with a ”todo” list. Or better yet, release your 1.0 without a ”todo” list,
and surprise your 1.0 users with stunning feature after stunning feature in sub-
sequent releases. That will make for much better PR than eternally chunking
out pre-1.0 versions because in your mind you reserved 1.0 for your personal
software utopia.

6

7.1 The 1.0 Warranty

Releasing version 1.0 of your product is a warranty given to the user: Your prod-
uct does what it is advertised to do. There is documentation available that is
up-to-date and complete. The software was reasonably tested and behaves cor-
rectly in the face of erroneous input. You intend to still provide support for this
version for a reasonable amount of time should a later version be incompatible
with it.

The user, on the other hand, knows that a pre-1.0 version isn’t really in-
tended for casual everyday use, and might misbehave spectaculary. He also
knows that a 1.0 version still leaves things to be desired (and hopefully imple-
mented in later versions). He knows he’s using your pre-1.0 at his own risk.

”Waitaminute,” I hear the OSS people cry, ”OSS software comes without
any warranty because I wasn’t payed for it. They are using it at their own
risk anyway!” To those people I can only say, you are a disgrace to software
engineering and haven’t grasped the concept that users will download your
software because they expect it to work as advertised. They might not be
inclined to sue you for not delivering, but they are inclined to give you a lip if
you release shitty software.

If you’re playing in a band playing in public places, not getting payed is
no excuse for bad performance either, and people will run you off if your per-
formance sucks. If you don’t feel up to delivering quality, you’re excercising
the wrong hobby. Try ikebana as an artistic output that doesn’t offend other
people, or hole up in a basement, but spare other people the trouble of finding
out how bad your performance actually is.

Sorry, ranting again, but this one came from the heart.

8 Miscellaneous

8.1 1.0 Release

The 1.0 release is somewhat special: It marks the transition from pre-release
sequential numbering to the alpha / beta / release cycle. It is quite likely that
you want to skip alpha, and possibly even beta phase completely for 1.0, since
you did spend considerable amount of time testing and improving MySoft 0.1,
0.2, 0.3 etc. etc.

Ideally, your 1.0 should be the most well-tested and solid release ever.

8.2 Major Releases

At some point, there will be improvements on your todo-list that cannot be
achieved without breaking downward compatibility. The new version of MySoft
will offer much more functionality, but e.g. scripts written around previous
versions of MySoft will have to be re-checked whether they work correctly with
the new version.

That is why you will bump the major version number of MySoft with the
next release. After 1.7, the next version will be 2.0. As to the alpha / beta
cycle, everything remains the same.

The thing, however, is that there will be people refusing to update to 2.0.
They might not want to go through the maintenance hassle of checking all

7

their scripts again. They might not consider your 2.0 much of an improvement.
(Significant changes always bear the risk of significant loss in quality.) The price
tag coming with your 2.0 might outweight the benefits.

Anyway, people might expect you to continue the 1.x product line for some
time, not only with critical patches but some feature back-porting too. The
more complex your product, the more seldom should you do a major release.

9 License

Written 2004-2016 by Martin Baute.
Permission is granted to use, copy, and modify at will.

8

